Новые данные о фундаментальных проблемах, полученные с помощью БАК

Исследование топ-кварков
Эти частицы – наиболее тяжелые не только из кварков, но также из всех известных науке элементарных частиц. Их масса слишком велика для того, чтобы топ-кварки можно было изучать на большинстве ускорителей. Помимо прямого научного интереса, данные частицы используются как средство для исследований бозона Хиггса. Бозоны появляются на свет в БАК совместно с парой топ-кварк/антикварк. Поэтому следует лучше представлять свойства кварков, чтобы выделять из их среды бозоны.

Исследование электрослабой симметрии
Среди основных задач БАК, помимо подтверждения существования бозона Хиггса, следует отметить то, каким образом данная нестабильная частица оказывает влияние на симметрию электрослабого взаимодействия. Бозон, как известно, — квант такого физического явления, как поле Хиггса. Преодолевающее эту среду элементарные частицы сталкиваются с сопротивлением, что физика осознает как поправки к массе.

Исследование кварк-глюонной плазмы
Помимо прочих экспериментов, в БАК проводятся опыты со столкновением ядер атомов свинца. В процессе неупругого контакта пары таких ядер на ультрарелятивистских скоростях на короткий срок появляется и исчезает сгусток ядерного в-ва высокой плотности и температуры. Изучение характерных для этого процессов (преобразование в-ва в кварк-глюонную плазму) необходимо для выстраивания более корректной теоретической модели сильных ядерных взаимодействий, которая позволит добиться существенного прогресса как собственно в физической науке, так и в понимании астрономических процессов.

Исследование фотонных взаимодействий
ЭМ взаимодействие понимается как обмен фотонами. Проще говоря, фотоны считаются носителями ЭМ поля. Протоны же обладают электрическим зарядом и электростатическим полем, которое допустимо считать совокупностью виртуальных фотонов.

Когда протоны приходят в столкновение, окружающие их фотоны вступают во взаимодействие. Тем самым, изучая процесс столкновения протонов, физики занимаются исследованием поведения фотонов высокой энергии.

Помимо этого, имеет место особая разновидность реакций – прямое взаимодействие пары фотонов.

Поскольку БАК располагает большей энергией в сравнении с коллайдерами ранних версий, он дал ученым возможность исследовать неизведанную до того область энергий и обрести научные данные, которые помогают уточнить некоторые теоретические построения.

Сегодня к наиболее заметным научным «прорывом», достигнутым при помощи коллайдера, относят открытие бозона Хиггса. Уже сейчас его многие называют одним из наиболее громких открытий XXI столетия, поскольку бозон Хиггса помогает объяснить наличие массы частиц в нашем пространстве. Следовательно, тем самым получено подтверждение Стандартной модели, на основе каковой в наше время физика моделирует поведение и реакции элементарных частиц. И как раз это их взаимодействие является фундаментом, на котором построено все наше мироздание.

Сущность действия бозона Хиггса заключается в том, что он участвует в формировании массы и обмене ею среди прочих элементарных частиц. Однако это крайне упрощенное изложение функций бозона, и всем заинтересовавшимся этой частицей рекомендуем изучить соответствующие научные публикации.

Прочие научные результаты БАК:

  • проведены исследования базовых статистических параметров столкновений протонов, оценка числа рожденных адронов, корреляции мезонов;
  • продемонстрировано, что не существует асимметрия протонов и антипротонов;
  • наблюдались необычные корреляции протонов, летящих по весьма различным траекториям;
  • уточнены параметры возможных контактных взаимодействий кварков;
  • зафиксированы существенные признаки образования кварк-глюонной плазмы и т.д.

Те самые две трубки, по которым частицы движутся в противоположных направлениях

Разумеется, эти опасения имеют под собой определенную основу, однако:

  • в случае, если теоретически БАК сформировал бы черную дыру, то ее размеры оказались бы микроскопическими. И есть предположение, что чем они миниатюрнее, тем быстрее такой объект аннигилируется, превращаясь в энергию, не успев нанести ни малейшего ущерба. Но здесь нельзя утверждать ничего наверняка, потому что все это основано на гипотезах и теориях.

С другой стороны, возможно, при столкновении в БАК недостаточно кинетической энергии, чтобы выполнилось условие R=2GM/c2 (гравитационный радиус), необходимое для образования черной дыры.

По мере того, как Большой адронный коллайдер приступит к работе на полной мощности и светимости (2021 — 2023 гг.), его разработчики планируют остановку на 2,5 года для модернизации детекторов и ускорителей (проект HL-LHC). Тем самым будет усилена светимость БАК и обеспечена возможность проведения опытов с еще большей энергией. Ученые также намерены организовать опыты путем столкновения протонов и электронов, что потребует дополнительного оборудования для разгона элементарных частиц.

Кроме того, в планах ЦЕРНа есть куда более амбициозный международный проект, создание коллайдера с 100 км. кольцом. Текущее название проекта Future Circular Collider (FCC, «Будущий циклический коллайдер»).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *